Contributions from the Department of Biology, University of Western Australia-No. 1.

Protocrangonyx fontinalis, a new blind freshwater Amphipod from Western Australia, by George E. Nicholls, D.Sc., F.L.S., Professor of Biology, University of Western Australia.
(Read June 8, 1926. Published June 29, 1926.)

In December, 1923, with Miss Miner, I deseribed a new Phreatoicid, Hyperncdesipus pumesus, taken by myself during the previous winter, in a spring near Lesmurdie Falls. With this were collected a few small, blind and transparent Amphipods, which form the subjeet of the present communication. The general appearance of both of these Crustaceans was highly suggestive of a subterranc:m habitat. Associated with them were a number of translucent white planarians. The spring flows only for a brief period after heavy rainfall, and it is practically certain that these forms are swept to the surface only when the water gushes up strongly from below and are then to be looked for, hiding from the light, beneath decaying vegetable matier accumulated in the little hollow immediately below the incls-wide orifice of the spring. A somewhat similar condition, appareatly, was found by Sayce (1902) in the association of Phreatoicoides gracilis, Janirella pusilla and Niphargus pulchellus, all blind forms occurring in surface waters in Victoria. Sayce supposed, however, that this was an attempt on the part of blind sub)termean forms to re-occupy surface waters permanently. It would appear wuch more probable that, like the association I have described, it is merely an accidental and involuntary temporary reversion to life at the surface. Undoubtedly these surface-living iudividuals and their offspring must either perish at the onset of the dry weather, or, creeping after the retreating moisture, return to their subterrancan haunts. That they do so retreat, or more probably that some escape being swept to the surface, and continue to lead a subterranean life, is evident, for duing the next two winters (1924 and 1925) the spring was not found rumning, and no specimens were to be discovered, although the spot was frequently visited and carefully searched, but in the present winter, the first visit of tho season, made on May 26th, after several days of heavy rainfall, yielded more than a hundied specimens of both Amphipod and Isopod,
the planarian being less abundant. An extended search, lasting the whole day, revealed the Amphipod, occuring not very abundantly, in another simitar spring some hundreds of yards lower down the valley, but Hyperocdesipus was not found there.

The Amphipod proved not only to be new, but to exhibit a combination of characters which made it difficult to assign it to any described genus; coming nearest, perhaps, to Eucrungonyx (known only from (entral Europe and North America), from which it differs principally in the shape of the telson and certain of the mouth parts. From the New Zealand genus Paracrangonyx it was excluded by its retention of both the rami of the pleopods. It is clearly marked off from Crangonyx, to which it has obvious affinities, by its possession of an imner ramus to the third uropod, which has been lost in Crangonyx; some species of this gemus, however, have preserved the entire condition of the telson, as lave the single species of both Paracrangonyx and Apocrangonyx. The latter, however, has lost both rami from the third uropod. In its month parts, the Lesmurdie specimen approaches more closely to Paracrangonys and to Neoniphargus (an Austratian gemus), from which latter it is readily distinguisled by the cleft telson and elongate third uropod of that genus. It has been found necessary, therefore, to constitute a new genus for the reception of this Western Australian form, for which I propose the name Protocrangonyx.

protocrangontid gell. hov

Body compressed, not carimate. Side-plates shallow, 1-4 scarcely deeper than the following. Eyes absent. Antemal 1 the longer, aceessory flagelhm small, e-jointed. Upper lip rounded, lower lip with indistinct inner lobe, mandibular palp with end joint longer than Brd, maxilla 1 inmer plats with a single seta, palp differs on the two sides, maxilla 2 inner phate partly fringed on both imer and outer margins, maxillipen with outer plate reaching to middle of end lobe of palp, and set mesially with stout spines and setace. Gnathopocts 1 and 2 equal, subechelate, 6th joint not markedly wider than 5th. Peratopods 3-5, 2nd joint slightly expandel, accessory brauchiae on :3 and 4. Uropods 1-3 projecting backwardly to the same level, rami !mequal, wopor 3 small, with short 1 -jointed outer ramus, imer ramus rehued to a seale. Telson small, entire.

Protocrangonyx fontinalis $s p$ nov.

Body slender. Side plates :hallow, side-plate 4 the deepest. Pleon segments 1-3 broader than the precerting, a corpple of setules on each dossally, usually two or three setale upon ventral margin of each plate; postero-lateral comers quadrate or obtusely quadrate. Eyes wanting. Antema 1 almost lalf the length of the animal, flagellum with 12-13 joints, twien as long as peduncle; accessory flagellum - -jointed, usually as long as first two articuli of flagellum. Antema 2 two-thirds length of autema 1, the joint of perhuncte
considerably longer than 5th, flagellum of 7 joints equal to combined length of peduncle joints 3-5. Upper lip romeded, lower lip with inner lobe not distinct. Mandible with cutting edge and accessory phate dentate, t on $\overline{5}$ spines in spine row, palp 1 st foint longer than broad, 2nd joint longer than ard ; acessory plate stighter on right mandible. Daxilla 1 imer phate small, rombed apicilly with a single ferbig plumose seta, onter plate with 8 (9) pectinate strongly chitinised setac, end joint of palp with 6 (oceasionaliy in) $^{\text {J }}$) stout tooth-like spines on apex. On the opposite side these spines are replaced by a like momber of stiff setac, feelly phmose. Mixilla 2 both plates with 12-14 curved setae apically, outer phate firinged with fine setae, extermally, inner plate with sinilar fringe on both inner and onter margins and at summit of imner margin a couple of stiff phmose setae. Maxilliped outcr plate broader than inner, armed mesiolly with several stont spines (? spine teeth) and three longer setae, apically set with a number (6-7) of curved spine teeth extending to midde of end joint of palp, patp moderate, 4 th joint with mail.

Gnathopods 1 and 2 similar, zth joint trimonlar, eup-shaped, Gith much longer, broad at base, widest at middle; palm oblique, guarded by a few setae and stont spines with noteh and eilium near tip; finger strong, curvel. Poracopods $1-: 3$ suberqual, shorter :and more stender than peracopots 4 and $\bar{\pi}$; end joints peraeopods 3 oblong oval; accessory branchiae, long oval in shape, on peracopots 3 and 4.

Uropods 1 and 2 projecting as f:u backwards :s mopod 3 ; uropod 1 peduncle eonsiderably longer than the rami, of which outer is shorter than imer; nroporl a pedmele as long as the longer (imner) ramus; aropod 3 short stout pertuncle slightly longer than the outer 1-jointed ramus, inner ramus a minnte seate without setae or spines.

Telson rounded, entire, shorter than ramis of mropod 3 , twice as broad as long, armed posteriorly with one pair of large and one of stlabller spines.

Spines on rami of mropods and telsom are noteled and bear cach a chrved cilimu near the apex.

Length of largest specimen barely exceeding is mom.
Colour.-In life, creany white and semi-transparent.
Hobilut.--Taken beneath mud and decayed vegetable matter, aromed the orifices of small springs in the valtey of the Yule Brook, below the Lesumrdie Falls, in the Darling Range. Avidently normally subterranean, but brought to the surface when the witer wells up umsually strongly after execptionally heavy rainfall.

The smooth body, Pl. V1II. Fig 1, almost wholly free from conspicuous setae is somewhat narrowly compressed, the impression of
slenderness being embanced by the shallowness of the side plates, and the slightness of the expausion of the second joints of the hinder peracopods. Thas in females, only purtly grown, the developing marsupial plates hang down well below side-plates $2-4$, while the oval bomehiae, both primary and acessory, are clearly visible pendant between the end joints of the peraeopods.* On each of peracon segments 5 and 6 two pairs of these gills oceur, the more anteriorly phaced apparent!y being the supplenentary structure.

The hroll is telatively short, without rostrum and exhibiting no trater of eyes.

In the procucon, the segments are sub-equal, the thinde, fourth and fifth being wery sigglaty narrower The dorsal margin of the sideplates is very slightly imdicated and difficult to determine. The thourth side-phate shows mey little posterior emarginstion, and the lobing of side-plates 5-7 is little developed. This slight developmont of the side phates, giving a sub-whimbleal shape to the slender bouly is dountless an adizptation to the subterrancan life, permitting more ready phassige throngh the narrow erevices in the granitic rock.
lu the plow, the finst three segments are wider than the precoding and as lowp as the combined depth of segment and side-plate. In the midedemal line these the see sements each bear on the posterion margin a comple of a small simple setace, the peracom segments and those of the mons being devoid of such setane.

Appendages.-In the noper antenne, the three joints of the peduncle diminisla progressively in lengeth and stontmess. The flagellan has twelve or thiteren articuli (sometimes differing on opposite sides). The \because-jointed aceetsory magellum usmatly has a kngth almost equabling the first two articuli of the main flagellum, but is ormsionally fomed mucla shorter, the second (terminal) joint in the eqe eqses being very small. In one speriment, on one site, there were present threa, almost equal, joints.

Of the lower untomm, the two proximally situated joints of the prduncle are fosed with the head, the sutures remaining quite distinct; the three succeding joints (3-5) are stout, the third much the shontest, the fourth slightly longer than the fifth. The flagellum, also, is relatively stonter than that of the upper aintema, consists of sevell joints which together are very slightly longer than the three free joints of the peltuncle.

The mouth parts have already been deseribed in some detail in the specific diaguosis. A few further uotes may be added here

The upper lip (Pl. VIII. Fig. 2) is rounded, as in Neoniphargus spenceri, but much more setose. The lower lip (Pl. VIII. Fig; 3)
*Cf. Niphargus pulchellus Sayce (1900, Vol. 12, Pl, 15, Fig. 1).
has the median lobe less well defined and the setae of the ventral border are not very mamerons. The onter limit of the setale on the left side is defined by a short stont spine which is, perlapes, present also in Nemphargus speneeri and Niphergus mehellus |'fe. Sayee's figures (1900, Pl. 16, Fig J, and 1900a, Il. 40, Fig. ㄹ)]. thougl. Saye makes no mention of it. I fiud a somewhat similay structure in N. branchiulis. (1921, Pl. 10, Fig. L. 2). Mandibutar processes are well developed.

The left mandible (Pl. VIll. Fig. t) is much as in Niphurgus pulchellus (1900 , Pl. 16, Fig 4), but the acecessory dentate elge is more widely separated feom the principal entang edge. The right mandible (Pl. VIII. Fig. fit) approximates much more nearly to the condition figured by Sayce for Neoniphargus spenceri (1900a, Pl. 40, Pig Mr:).

The first maxilla (Tl. VIIL. Fig. J) somewhat resembles that of Necmiphargus brenchatis (1924, Pl. 10, Fig. ML1) and N. thomsomi (1893 , Pl. 6, Fig. 5). The small rombed inner lobe is crowned by a single slight, searecly plumose seta set in a gencral fringe of delicate setac. The outer plates are relatively farger and are armed apically with 8 (or 9) strongly chitinised pectinate setae with an imermost simple seta. The palp, which differs on opposite sides, is moder relatively (as compared with N. Zranchialis.) On the one side it bears terminally (i short comical spines, while on the other (Pl. VIII. Fig. .a) these are replaced by five stiff setae sparsely plumose,

Fig. 1.-Protocrangonyx fontinalis sp. nov. Second Maxilla.

The second maxilla (Fig. 1) has the outer plate the broader; it is fringed externally with delicate setae and crowned with a dozen stiffly curved setae. The immer plate has the fringe of setae on
botlo inmer and outer margins and an apical set of fonrteen curved setae and two inner phamose setae, an olrangement closely paral-

The marilliped (Pl. V'll. Fig. (6) has somewhat marow immer

 tringe along the inner marein of this plate; proximally there are theres long straight setale.
 and :pparently similar in both sexes. In these (and in the perae-

 slight widening of the seconcl joint of peraeopords $3-5$ producing a marowly oral strocture. The shallowness of the side phates $\bar{j}-7$ repores a marom distal portion of the first joint.

Tho prongods are biramons, of morlorate lemogth, with unequal 1:ami. the thime paid distinctly shorter than the preceding.
 a pair of shember and metuat lami, armed with spones. In the first athe second mopods it is the imere ramus which is the longer. In wropod 1 the pedmade is late as long again as the longer ranats and twied as long as the outer mams. The socond and thind uropods have He [ex lancle subequal in fongth to the longer rami. The third uropod (l'l. VIII. Fig. 9) has the immer ramus represented by a sumall seale whict leats mexther spine nor setale and reaches a length barely a thirel of the pedmele. The spines on telson (Pl. VIII. Fig.
 near the apers to receive a slender eurved cilimm. This form of

 in Proteromatonyx fontinalis, upon the perateopois some are of this character as :He the few setac oceurring apon the basal joints of the pheopors (the lenge setan heon the rami of the pleopods are blumose), but most of the setan upon the legs as well as those mear the ventral margins of the side-plates and pleon segments appear to be simple setac.

Remarks.-As noted above the affinities of this species seem to be in nearly equal degree with the forms gromped under

[^0]Crangonyx, Paracrangonyx, Eucrangomys, and Nconiphiat!us,* I_{1} the genus Cotongonyx are plased a munber of species (mostly from wells and springs in North Imerica), in which the telson may be either entire or cheft in varying degree. In all of these, however, the immer mamus of the thided wroped has disappeared. I: Eucrangonyx (habitat and distribntion agreeing with that of Crangonyr) with one of the spe:ies of which (E. cejolorshyi) the Western Australian form shows many points of agreement, the genus is defined as possessed of an emarginate telson. Had the teleon in this gemus been variable, as it is in Crangomyx, I should lave been inclined to refer the now species to it. To the Now Zealand form, Paractangomyx compachlus (Chilton), also, P. fontinalis, comes very near inasmum as although both rami of the pheopods are retained in the latter, there is a marked difference in the degree of development of the two mani, one apparently undergoing retrogression. In both the tremon is entire. The month parts, too, are more nearly alike, the immer plate of maxilla 1 being small and with but few setae (2 and 1 respectively), whereas in Crongonyx and Eucrongonyx the imer phate has numerons (4-6) setae In the condition of the mouth pants. P '. fontinalis appreaches, also, to Neomiphargus, but in this genas the telsom is cleft and the third uropod clongated.

In the character of the setae it is interesting to note that the notehed seta with the cilimm is fomb not ouly in Crethgonys and Protocrangonyx, but aiso in Neomiphorgas. In this genus I find it in a blind Victorian species (N. obrieni, 1926), and also in another hind form, N. westralis Chiltom (1925). What may readily be a tramsitional condition in the evolution of this type of seta is figured by Sayce in his account of Niphargus pulchellus (1900, Pl. 16, Fig. 12), where a stout phomose seta, oceuring near the base of a pleopori ramus, is shown with one branch closely comparable in position and size to the Cramgonyx cilium. Upon: the dactyl of the peracopods (Pl. VIII. Fig. 8) there is in P^{\prime}. fontinalis a single stify seta in the position occupied in Neominhargus by the characteristic, well-developed plumose seta.

[^1]
List of References.

1893, Thomson, G. M., P.R.S., Tas., 1893.
1900, Sayce, O. A., P.R.S., Vic., 1900.

1900: N, Wyyer, O. A. P.R.S., Vje., 1900.

1906, stchling, T. R. R., "Gammaridea', Bromn's Thierreich, 1906.

192:. Nichouls \& Milnor, J.R.S.W.A. Vol. 10, 1924.
1:224, Niclolls, (t. E., J.R.S.W.A., Vol. 10, 1924.
1992. , (llithon, C., J.R.S.W.A., Vol. 11, 1925.

19\%(6, Nichots, J.R.S.W.A. Kol. 12 (in the press), 1926.

Raphanathe of Phate lili.
Prolocrengomys fontinalis mini.

1. Entire :mimal.
2. Lpper lip.

3 Lower lip.
t. Left mandinne; in the spine row the spines are seen bent latrk.
ta. Riglot mandible, cutting edges.
万. First maxilla, with enlarged setas.
Ta, Daly of first maxilla, of opposite side.
(i. Alaxilliped.
7. Ginathopoct.

7a. Palm of grathopod, still further eniargeet.
8. Dactyl of Peracoport 1.
9. Third uropot, seen from above, with enlarged spine (sp).
10. Telson.

[^0]: * As an abnormal development, one specimen slowed the 1st peraeoporle as stout and ato long as the 4 th or $\overline{\mathrm{j}}$ th.

[^1]: *All of these genera are, however, represented ahmost entirely by forms which have taken to a subterrancan mode of life, and while tire resemblances may well be explained by a common ancestry, it is possibie that matay of their common features may be due to convergence resulting from adaptation to a similar manner of life.

